Send to

Choose Destination
J Am Soc Mass Spectrom. 2006 Oct;17(10):1429-1436. doi: 10.1016/j.jasms.2006.06.008. Epub 2006 Jul 27.

The effect of radical trap moieties on electron capture dissociation spectra of substance P.

Author information

Department of Chemistry, Boston University, Boston, Massachusetts, USA.
Department of Chemistry, Boston University, Boston, Massachusetts, USA.


To further test the hypothesis that electron capture dissociation (ECD) involves long-lived radical intermediates and radical migration occurs within these intermediates before fragmentation, radical trap moieties were attached to peptides with the assumption that they would reduce fragmentation by decreasing the mobility of the radical. Coumarin labels were chosen for the radical traps, and unlabeled, singly-labeled, and doubly-labeled Substance P were analyzed by ECD. The results demonstrated a correlation between the number and position of tags on the peptide and the intensity of side-chain cleavages observed, as well as an inverse correlation between the number of tags on the peptide and the intensity of backbone cleavages. Addition of radical traps to the peptide inhibits backbone cleavages, suggesting that either radical mobility is required for these cleavages, or new noncovalent interactions prevent separation of backbone cleavage fragments. The enhancement of side-chain cleavages and the observation of new side-chain cleavages associated with aromatic groups suggest that the gas-phase conformation of this peptide is substantially distorted from untagged Substance P and involves previously unobserved interactions between the coumarin tags and the phenylalanine residues. Furthermore, the use of a double resonance (DR)-ECD experiment showed that these side-chain losses are all products of long-lived radical intermediate species, which suggests that steric hindrance prevents the coumarin-localized radical from interacting with the backbone while simultaneously increasing the radical rearrangements with the side chains.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Springer Icon for Elsevier Science
Loading ...
Support Center