Send to

Choose Destination
Xenobiotica. 2006 Jul;36(7):631-44.

Role for enhanced faecal excretion of bile acid in hydroxysteroid sulfotransferase-mediated protection against lithocholic acid-induced liver toxicity.

Author information

Division of Drug Metabolism and Molecular Toxicology, Tohoku University, Graduate School of Pharmaceutical Sciences, Aramaki, Sendai, Japan.


The efficient clearance of toxic bile acids such as lithocholic acid (LCA) requires drug-metabolizing enzymes. We therefore assessed the influence of pregnenolone 16alpha-carbonitrile (PCN) treatment on LCA-induced hepatotoxicity and disposition of LCA metabolites using female farnesoid X receptor (FXR)-null and wild-type mice. Marked decreases in serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities, and hepatic tauroLCA (TLCA) concentrations were found in LCA-fed wild-type mice co-treated with PCN. Whereas induction of Cyp3a and hydroxysteroid sulfotransferase (Sult2a) proteins was observed in FXR-null and wild-type mice, clear increases in biliary 3alpha-sulfated TLCA but not total 6alpha-hydroxy LCA (taurohyodeoxycholic acid and hyodeoxycholic acid) were only observed in PCN-treated wild-type mice. Biliary 3alpha-sulfated TLCA output rate was increased 7.2-fold, but accounts for only 4.2% of total bile acid output rate in LCA and PCN-co-treated wild-type mice. Total 3alpha-sulfated LCA (LCA and TLCA) was, however, the most abundant bile acid component in faeces suggesting that efficient faecal excretion of biliary 3alpha-sulfated TLCA through escape from enterohepatic circulation. FXR-null mice, which have constitutively high levels of the Sult2a protein, were fed a diet supplemented with 1% LCA and 0.4% dehydroepiandrosterone (DHEA), a typical Sult2a substrate/inhibitor. The faecal total 3alpha-sulfated bile acid excretion was reduced to 62% of FXR-null mice fed only the LCA diet. Hepatic TLCA concentration and serum AST activity were significantly higher in FXR-null mice fed DHEA and LCA diet than in FXR-null mice fed the LCA diet or DHEA diet. These results suggest that hepatic formation of 3alpha-sulfated TLCA is a crucial factor for protection against LCA-induced hepatotoxicity.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Taylor & Francis
Loading ...
Support Center