Hydrogen peroxide restrains endothelium-derived nitric oxide bioactivity -- role for iron-dependent oxidative stress

Free Radic Biol Med. 2006 Aug 15;41(4):681-8. doi: 10.1016/j.freeradbiomed.2006.05.012. Epub 2006 May 19.

Abstract

Vascular diseases are characterized by impairment of endothelial-derived nitric oxide (NO) bioactivity and increased vascular levels of hydrogen peroxide (H(2)O(2)). Here we examined the implications of H(2)O(2) for agonist-stimulated endothelial NO bioactivity in rabbit aortic rings and cultured porcine aortic endothelial cells (PAEC). Vessels pre-treated with H(2)O(2) exhibited impaired endothelial-dependent relaxation induced by acetylcholine or calcium ionophore. In contrast, H(2)O(2) had no effect on endothelium-independent relaxation induced by a NO donor, indicating a defect in endothelium-derived NO. This defect was not related to eNOS catalytic activity; treatment of PAEC with H(2)O(2) enhanced agonist-stimulated eNOS activity indicated by increased eNOS phosphorylation at Ser-1177 and de-phosphorylation at Thr-495 and enhanced conversion of [(3)H]-L-arginine to [(3)H]-L-citrulline that was prevented by inhibitors of Src and phosphatidylinositol-3 kinases. Despite activating eNOS, H(2)O(2) impaired endothelial NO bioactivity indicated by attenuation of the increase in intracellular cGMP in PAEC stimulated with calcium ionophore or NO. The decrease in cGMP was not due to impaired guanylyl cyclase as H(2)O(2) treatment increased cGMP accumulation in response to BAY 41-2272, a NO-independent activator of soluble guanylyl cyclase. At concentrations that impaired endothelial NO bioactivity H(2)O(2) increased intracellular oxidative stress and size of the labile iron pool in PAEC. The increase in oxidative stress was prevented by the free radical scavenger's tempol or tiron and the iron chelator desferrioxamine and these antioxidants reversed the H(2)O(2)-induced impairment of NO bioactivity in PAEC. This study shows that despite promoting eNOS activity, H(2)O(2) impairs endothelial NO bioactivity by promoting oxidative inactivation of synthesized NO. The study highlights another way in which oxidative stress may impair NO bioactivity during vascular disease.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antioxidants / pharmacology
  • Blotting, Western
  • Endothelium, Vascular / drug effects*
  • Endothelium, Vascular / metabolism
  • Enzyme Activators / pharmacology
  • Hydrogen Peroxide / pharmacology*
  • Immunoprecipitation
  • Iron / metabolism*
  • Nitric Oxide / metabolism*
  • Nitric Oxide Synthase Type III / metabolism
  • Oxidative Stress*
  • Pyrazoles / pharmacology
  • Pyridines / pharmacology
  • Rabbits
  • Swine

Substances

  • 3-(4-Amino-5-cyclopropylpyrimidine-2-yl)-1-(2-fluorobenzyl)-1H-pyrazolo(3,4-b)pyridine
  • Antioxidants
  • Enzyme Activators
  • Pyrazoles
  • Pyridines
  • Nitric Oxide
  • Hydrogen Peroxide
  • Iron
  • Nitric Oxide Synthase Type III