The effect of surface-active solutes on bubble coalescence in the presence of ultrasound

J Phys Chem B. 2005 Mar 24;109(11):5095-9. doi: 10.1021/jp0476444.

Abstract

The sonication of an aqueous solution generates cavitation bubbles, which may coalesce and produce larger bubbles. This paper examines the effect of surface-active solutes on such bubble coalescence in an ultrasonic field. A novel capillary system has been designed to measure the change in the total volume resulting from the sonication of aqueous solutions with 515 kHz ultrasound pulses. This volume change reflects the total volume of larger gas bubbles generated by the coalescence of cavitation bubbles during the sonication process. The total volume of bubbles generated is reduced when surface-active solutes are present. We have proposed that this decrease in the total bubble volume results from the inhibition of bubble coalescence brought about by the surface-active solutes. The observed results revealed similarities with bubble coalescence data reported in the literature in the absence of ultrasound. It was found that for uncharged and zwitterionic surface-active solutes, the extent of bubble coalescence is affected by the surface activity of the solutes. The addition of 0.1 M NaCl to such solutes had no effect on the extent of bubble coalescence. Conversely, for charged surface-active solutes, the extent of bubble coalescence appears to be dominated by electrostatic effects. The addition of 0.1 M NaCl to charged surfactant solutions was observed to increase the total bubble volume close to that of the zwitterionic surfactant. This suggests the involvement of electrostatic interactions between cavitation bubbles in the presence of charged surfactants in the solution.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Air
  • Surface-Active Agents / chemistry*
  • Ultrasonics*

Substances

  • Surface-Active Agents