Send to

Choose Destination
See comment in PubMed Commons below
J Theor Biol. 2006 Nov 7;243(1):121-33. Epub 2006 Jun 12.

Productivity, dispersal and the coexistence of intraguild predators and prey.

Author information

Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095-1606, USA.


A great deal is known about the influence of dispersal on species that interact via competition or predation, but very little is known about the influence of dispersal on species that interact via both competition and predation. Here, I investigate the influence of dispersal on the coexistence and abundance-productivity relationships of species that engage in intraguild predation (IGP: competing species that prey on each other). I report two key findings. First, dispersal enhances coexistence when a trade-off between resource competition and IGP is strong and/or when the Intraguild Prey has an overall advantage, and impedes coexistence when the trade-off is weak and/or when the Intraguild Predator has an overall advantage. Second, the Intraguild Prey's abundance-productivity relationship depends crucially on the dispersal rate of the Intraguild Predator, but the Intraguild Predator's abundance-productivity relationship is unaffected by its own dispersal rate or that of the Intraguild Prey. This difference arises because the two species engage in both a competitive interaction as well as an antagonistic (predator-prey) interaction. The Intraguild Prey, being the intermediate consumer, has to balance the conflicting demands of resource acquisition and predator avoidance, while the Intraguild Predator has to contend only with resource acquisition. Thus, the Intraguild Predator's abundance increases monotonically with resource productivity regardless of either species' dispersal rate, while the Intraguild Prey's abundance-productivity relationship can increase, decrease, or become hump-shaped with increasing productivity depending on the Intraguild Predator's dispersal rate. The important implication is that a species' trophic position determines the effectiveness of dispersal in sampling spatial environmental heterogeneity. The dispersal behavior of a top predator is likely to have a stronger effect on coexistence and spatial patterns of abundance than the dispersal behavior of an intermediate consumer.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center