Format

Send to

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 2006 Jul;1757(7):829-34. Epub 2006 Jun 17.

Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum.

Author information

  • 1Department of Biophysics, Huygens Laboratory, Leiden University, The Netherlands.

Abstract

In Phaeodactylum tricornutum Photosystem II is unusually resistant to damage by exposure to high light intensities. Not only is the capacity to dissipate excess excitations in the antenna much larger and induced more rapidly than in other organisms, but in addition an electron transfer cycle in the reaction center appears to prevent oxidative damage when secondary electron transport cannot keep up with the rate of charge separations. Such cyclic electron transfer had been inferred from oxygen measurements suggesting that some of its intermediates can be reduced in the dark and can subsequently compete with water as an electron donor to Photosystem II upon illumination. Here, the proposed activation of cyclic electron transfer by illumination is confirmed and shown to require only a second. On the other hand the dark reduction of its intermediates, specifically of tyrosine Y(D), the only Photosystem II component known to compete with water oxidation, is ruled out. It appears that the cyclic electron transfer pathway can be fully opened by reduction of the plastoquinone pool in the dark. Oxygen evolution reappears after partial oxidation of the pool by Photosystem I, but the pool itself is not involved in cyclic electron transfer.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk