Send to

Choose Destination
Plant J. 2006 Sep;47(5):675-86. Epub 2006 Jul 19.

Expression of ABA 8'-hydroxylases in relation to leaf water relations and seed development in bean.

Author information

Department of Energy, Plant Research Laboratory, Michigan State University, East Lansing, MI 48824-1312, USA.


In plants, the level of abscisic acid (ABA) is determined by synthesis and catabolism. Hydroxylation of ABA at the 8' position is the key step in ABA catabolism. This reaction is catalyzed by ABA 8'-hydroxylase, a cytochrome P450 (CYP). The cDNAs of PvCYP707A1 and PvCYP707A2 were isolated from bean (Phaseolus vulgaris L.) axes treated with (+)-ABA and that of PvCYP707A3 from dehydrated bean leaves. The recombinant PvCYP707A proteins expressed in yeast were biochemically characterized. Yeast strains over-expressing any of the three PvCYP707As were able to convert ABA to phaseic acid (PA). The microsomal fractions from these yeast strains also exhibited ABA 8'-hydroxylase activity. Expression of PvCYP707A3 in primary leaves was strongly increased by water stress, whereas PvCYP707A1 and PvCYP707A2 mRNA levels were rapidly increased by rehydration of water-stressed leaves. Northern blot analysis of PvCYP707As in bean showed a high level of expression in the mature fruits, senescent leaves, roots, seed coats and axes. All three PvCYP707As were expressed at varying intensities throughout seed development. Imbibed seeds also had high PvCYP707A mRNA levels. Thus, expression of PvCYP707As is both environmentally and developmentally regulated. Transgenic Nicotiana sylvestris plants over-expressing PvCYP707As displayed a wilty phenotype, and had reduced ABA levels and increased PA levels. These results demonstrate that expression of PvCYP707As is the major mechanism by which ABA catabolism is regulated in bean.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center