Send to

Choose Destination
Appl Opt. 2006 Aug 1;45(22):5542-67.

Contribution of water-leaving radiances to multiangle, multispectral polarimetric observations over the open ocean: bio-optical model results for case 1 waters.

Author information

Department of Applied Physics and Applied Mathematics, Columbia University, 2880 Broadway, New York, NY 10025, USA.


Multiangle, multispectral photopolarimetry of atmosphere-ocean systems provides the fullest set of remote sensing information possible on the scattering properties of aerosols and on the color of the ocean. Recent studies have shown that inverting such data allows for the potential of separating the retrieval of aerosol properties from ocean color monitoring in the visible part of the spectrum. However, the data in these studies were limited to those principal plane observations where the polarization of water-leaving radiances could be ignored. Examining similar potentials for off-principal plane observations requires the ability to assess realistic variations in both the reflectance for and bidirectionality of polarized water-leaving radiances for such viewing geometries. We provide hydrosol models for use in underwater light scattering computations to study such variations. The model consists of two components whose refractive indices resemble those of detritus-minerallike and planktonlike particles, whose size distributions are constrained by underwater light linear polarization signatures, and whose mixing ratios change as a function of particulate backscattering efficiency. Multiple scattering computations show that these models are capable of reproducing realistic underwater light albedos for wavelengths ranging from 400 to 600 nm, and for chlorophyll a concentrations ranging from 0.03 to 3.0 mg/m(3). Numerical results for spaceborne observations of the reflectance for total and polarized water-leaving radiances are provided as a function of polar angles, and the change in these reflectances with wavelength, chlorophyll a concentration, and hydrosol model are discussed in detail for case 1 (open ocean) waters.


Supplemental Content

Full text links

Icon for Optical Society of America
Loading ...
Support Center