Format

Send to

Choose Destination
See comment in PubMed Commons below
Photosynth Res. 2006 Apr;88(1):31-41. Epub 2006 Jan 26.

Low-frequency resonance Raman studies of the H(M202)G cavity mutant of bacterial photosynthetic reaction centers.

Author information

1
Department of Chemistry, University of California, Riverside, California 92521-0403, USA. David.Bocian@ucr.edu

Abstract

Low-frequency (90-435 cm(-1)) NIR-excitation (875-900 nm) resonance Raman (RR) studies are reported for the H(M202)G cavity mutant of bacterial photosynthetic reaction centers (RCs) from Rb. sphaeroides that was first described by Goldsmith et al. [(1996) Biochemistry 35: 2421-2428]. In this mutant, the His residue that axially ligates the Mg ion of the M-side bacteriochlorophyll (BChl) of the special pair primary donor (P) is replaced by a non-ligating Gly residue. Regardless, the Mg ion of P(M) in the H(M202)G RCs remains pentacoordinates and is presumably ligated by a water molecule, although this axial ligand has not been definitively identified. The low-frequency RR studies of the H(M202)G RCs are accompanied by studies of RCs exchanged with D(2)O and incubated with imidazole (Im). The RR studies of the cavity mutant RCs reveal the following: (1) The structure of P(M) in the H(M202)G RCs is different from that of the wild-type, consistent with an altered BChl core. (2) A water ligand for P(M) in the H(M202)G RCs is generally consistent with the low-frequency RR spectra. The Mg-OH(2) stretching vibration is tentatively assigned to a band at 318 cm(-1), a frequency higher than that of the Mg-His stretch of the native pigment ( approximately approximately 235 cm(-1)). (3) The BChl core structure of P(M) in the cavity mutant is rendered similar (but not identical) to that of the wild-type when the adventitious water axial ligand is replaced by Im. (4) Exchange with D(2)O results in more global structural changes, likely involving the protein, which in turn affect the structure of the BChls in P. (5) Assignment of the low-frequency vibrational spectrum of P is generally more complex than originally suggested.

PMID:
16847742
DOI:
10.1007/s11120-005-9019-7
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center