Send to

Choose Destination
See comment in PubMed Commons below
Tissue Eng. 2006 Jun;12(6):1663-73.

Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation.

Author information

Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80309-0424, USA.


Hydrogels were prepared by copolymerizing a degradable macromer, poly(lactic acid)-b-poly(ethylene glycol)-b-poly(lactic acid) endcapped with methacrylate groups (PEG-LA-DM), with a nondegradable macromer, poly(ethylene glycol) dimethacrylate (PEGDM). Copolymer networks consisted of 100:0, 83:17, 67:33, and 50:50 PEGDM:PEG-LA-DM mass%, essentially creating scaffolds that exhibit 0, 17, 33, and 50% degradation over the time course of the experiment. Osteoblasts were photoencapsulated in these copolymer hydrogels and cultured for 3 weeks in vitro. Metabolic activity, proliferation, and alkaline phosphatase production were enhanced by an increase PEG-LADM content and corresponding degradation. Gene expression of the cultured osteoblasts, normalized to beta-actin, was analyzed, and osteopontin and collagen type I gene expression increased with degradation. Finally, as a measure of mineralized tissue formation, calcium and phosphate deposition was analyzed biochemically and histologically. Mineralization increased with increasing concentration of PEG-LA-DM and biochemically resembled that of hydroxyapatite.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Support Center