Send to

Choose Destination
See comment in PubMed Commons below
Biochemistry. 2006 Jul 25;45(29):8894-902.

Spectroscopic analysis of benzylidene anabaseine complexes with acetylcholine binding proteins as models for ligand-nicotinic receptor interactions.

Author information

  • 1Department of Pharmacology, University of California, San Diego, La Jolla, California 92093-0636, USA.


The discovery of the acetylcholine binding proteins (AChBPs) has provided critical soluble surrogates for examining structure and ligand interactions with nicotinic receptors and related pentameric ligand-gated ion channels. The multiple marine and freshwater sources of AChBP constitute a protein family with substantial sequence divergence and selectivity in ligand recognition for analyzing structure-activity relationships. The purification of AChBP in substantial quantities in the absence of a detergent enables one to conduct spectroscopic studies of the ligand-AChBP complexes. To this end, we have examined the interaction of a congeneric series of benzylidene-ring substituted anabaseines with AChBPs from Lymnaea, Aplysia, and Bulinus species and correlated their binding energetics with spectroscopic changes associated with ligand binding. The anabaseines display agonist activity on the alpha7 nicotinic receptor, a homomeric receptor with sequences similar to those of the AChBPs. Substituted anabaseines show absorbance and fluorescence properties sensitive to the protonation state, relative permittivity (dielectric constant), and the polarizability of the surrounding solvent or the proximal residues in the binding site. Absorbance difference spectra reveal that a single protonation state of the ligand binds to AChBP and that the bound ligand experiences a solvent environment with a high degree of polarizability. Changes in the fluorescence quantum yield of the bound ligand reflect the rigidification of the ring system of the bound ligand. Hence, the spectral properties of the bound ligand allow a description of the electronic character of the bound state of the ligand within its aromatic binding pocket and provide information complementary to that of crystal structures in defining the determinants of interaction.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society Icon for PubMed Central
    Loading ...
    Support Center