Format

Send to

Choose Destination
Int J Biochem Cell Biol. 2006;38(11):1893-900. Epub 2006 May 17.

Ecotin modulates thrombin activity through exosite-2 interactions.

Author information

1
LaBioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Outeiro São João Batista, Niterói, RJ 24001-970, Brazil.

Abstract

Ecotin is a Escherichia coli-derived protein that has been characterized as a potent inhibitor of serine-proteases. This protein is highly effective against several mammalian enzymes, which includes pancreatic and neutrophil-derived elastases, chymotrypsin, trypsin, factor Xa, and kallikrein. In this work we showed that ecotin binds to human alpha-thrombin via its secondary binding site, and modulates thrombin catalytic activity. Formation of wild type ecotin-alpha-thrombin complex was observed by native PAGE and remarkably, gel filtration chromatography showed an unusual 2:1 ecotin:enzyme stoichiometry. Analysis of the protease inhibitor effects on thrombin biological activities showed that (i) it decreases the inhibition of thrombin by heparin/antithrombin complex (IC50=3.2 microM); (ii) it produces a two-fold increase in the thrombin-induced fibrinogen clotting; and (iii) it inhibits thrombin-induced platelet aggregation (IC50=4.5 microM). Allosteric changes on thrombin structure were then evaluated. Complex formation with ecotin caused a three-fold increase in the rate of thrombin inhibition by BPTI, suggesting a displacement of the enzyme's 60-loop. In addition, ecotin modulated the enzyme's catalytic site, as demonstrated by changes in the fluorescence emission of fluorescein-FPRCK-alpha-thrombin (EC50=3.5 microM). Finally, solid phase competition assays demonstrated that heparin and prothrombin fragment 2 prevents thrombin interaction with ecotin. Altogether, these observations strongly support an ecotin interaction with thrombin anion-binding exosite-2, resulting in modulation of its biological activities. At this point, ecotin might be useful as a new tool for studying thrombin allosteric modulation.

PMID:
16843700
DOI:
10.1016/j.biocel.2006.05.001
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center