Format

Send to

Choose Destination
Curr Pharm Des. 2006;12(19):2409-24.

Slow-onset inhibition of 2-trans-enoyl-ACP (CoA) reductase from Mycobacterium tuberculosis by an inorganic complex.

Author information

1
Centro de Pesquisas em Biologia Molecular e Funcional, Instituto de Pesquisas Biomédicas, Pontifícia Universidade do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Abstract

Tuberculosis (TB) remains the leading cause of mortality due to a bacterial pathogen, Mycobacterium tuberculosis. The reemergence of tuberculosis as a potential public health threat, the high susceptibility of human immunodeficiency virus-infected persons to the disease, and the proliferation of multi-drug-resistant strains have created a need for the development of new antimycobacterial agents. Mycolic acids, the hallmark of mycobacteria, are high-molecular-weight alpha-alkyl, beta-hydroxy fatty acids, which appear mostly as bound esters in the mycobacterial cell wall. The product of the M. tuberculosis inhA structural gene (InhA) has been shown to be the primary target for isoniazid (INH), the most prescribed drug for active TB and prophylaxis. InhA was identified as an NADH-dependent enoyl-ACP reductase specific for long-chain enoyl thioesters. InhA is a member of the mycobacterial Type II fatty acid biosynthesis system, which elongates acyl fatty acid precursors of mycolic acids. Although the history of chemotherapeutic agent development demonstrates the remarkably successful tinkering of a few structural scaffolds, it also emphasizes the ongoing, cyclical need for innovation. The main focus of our contribution is on new data describing the rationale for the design of a pentacyano(isoniazid)ferrateII compound that requires no KatG-activation, its chemical characterization, in vitro activity studies against WT and INH-resistant I21V M. tuberculosis enoyl reductases, the slow-onset inhibition mechanism of WT InhA by the inorganic complex, and molecular modeling of its interaction with WT InhA. This inorganic complex represents a new class of lead compounds to the development of anti-tubercular agents aiming at inhibition of a validated target.

PMID:
16842188
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Bentham Science Publishers Ltd.
Loading ...
Support Center