Send to

Choose Destination
J Physiol. 2006 Oct 1;576(Pt 1):279-88. Epub 2006 Jul 13.

N-acetylcysteine attenuates the decline in muscle Na+,K+-pump activity and delays fatigue during prolonged exercise in humans.

Author information

School of Human Movement, Recreation and Performance, Victoria University, PO Box 14428, Melbourne, Victoria, Australia, 8001.


Reactive oxygen species (ROS) have been linked with both depressed Na(+),K(+)-pump activity and skeletal muscle fatigue. This study investigated N-acetylcysteine (NAC) effects on muscle Na(+),K(+)-pump activity and potassium (K(+)) regulation during prolonged, submaximal endurance exercise. Eight well-trained subjects participated in a double-blind, randomised, crossover design, receiving either NAC or saline (CON) intravenous infusion at 125 mg kg(-1) h(-1) for 15 min, then 25 mg kg(-1) h(-1) for 20 min prior to and throughout exercise. Subjects cycled for 45 min at 71% , then continued at 92% until fatigue. Vastus lateralis muscle biopsies were taken before exercise, at 45 min and fatigue and analysed for maximal in vitro Na(+),K(+)-pump activity (K(+)-stimulated 3-O-methyfluorescein phosphatase; 3-O-MFPase). Arterialized venous blood was sampled throughout exercise and analysed for plasma K(+) and other electrolytes. Time to fatigue at 92% was reproducible in preliminary trials (c.v. 5.6 +/- 0.6%) and was prolonged with NAC by 23.8 +/- 8.3% (NAC 6.3 +/- 0.5 versus CON 5.2 +/- 0.6 min, P < 0.05). Maximal 3-O-MFPase activity decreased from rest by 21.6 +/- 2.8% at 45 min and by 23.9 +/- 2.3% at fatigue (P < 0.05). NAC attenuated the percentage decline in maximal 3-O-MFPase activity (%Deltaactivity) at 45 min (P < 0.05) but not at fatigue. When expressed relative to work done, the %Deltaactivity-to-work ratio was attenuated by NAC at 45 min and fatigue (P < 0.005). The rise in plasma [K(+)] during exercise and the Delta[K(+)]-to-work ratio at fatigue were attenuated by NAC (P < 0.05). These results confirm that the antioxidant NAC attenuates muscle fatigue, in part via improved K(+) regulation, and point to a role for ROS in muscle fatigue.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center