Send to

Choose Destination
See comment in PubMed Commons below
Hum Gene Ther. 2006 Jul;17(7):751-66.

RNA interference-mediated gene silencing of pleiotrophin through polyethylenimine-complexed small interfering RNAs in vivo exerts antitumoral effects in glioblastoma xenografts.

Author information

Department of Pharmacology and Toxicology, Philipps-University School of Medicine, D-35033 Marburg, Germany.


RNA interference (RNAi) is a powerful strategy to inhibit gene expression through specific mRNA degradation mediated by small interfering RNAs (siRNAs). In vivo, however, the application of siRNAs is severely limited by their instability and poor delivery into target cells and target tissues. Glioblastomas are the most frequent and malignant brain tumors with, so far, limited treatment options. To develop novel and more efficacious therapies, advanced targeting strategies against glioblastoma multiforme (GBM)-relevant target genes must be established in vivo. Here we use RNAi-based targeting of the secreted growth factor pleiotrophin (PTN), employing a polyethylenimine (PEI)/siRNA complex strategy. We show that the complexation of chemically unmodified siRNAs with PEI leads to the formation of complexes that condense and completely cover siRNAs as determined by atomic force microscopy (AFM). On the efficient cellular delivery of these PEI/siRNA complexes, the PTN downregulation in U87 glioblastoma cells in vitro results in decreased proliferation and soft agar colony formation. More importantly, in vivo treatment of nude mice through systemic application (subcutaneous or intraperitoneal) of PEI-complexed PTN siRNAs leads to the delivery of intact siRNAs into subcutaneous tumor xenografts and a significant inhibition of tumor growth without a measurable induction of siRNA-mediated immunostimulation. Likewise, in a clinically more relevant orthotopic mouse glioblastoma model with U87 cells growing intracranially, the injection of PEI-complexed PTN siRNAs into the CNS exerts antitumoral effects. In conclusion, we present the PEI complexation of siRNAs as a universally applicable platform for RNAi in vitro and in vivo and establish, also in a complex and relevant orthotopic tumor model, the potential of PEI/siRNA-mediated PTN gene targeting as a novel therapeutic option in GBM.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Support Center