Send to

Choose Destination
Gene Ther. 2006 Nov;13(22):1569-78. Epub 2006 Jul 13.

Potentiation of in vivo neuroprotection by BclX(L) and GDNF co-expression depends on post-lesion time in deafferentiated CNS neurons.

Author information

Department of Neurology, Medical School, University of Göttingen, Göttingen, Germany.


To elucidate effective and long-lasting neuroprotective strategies, we analysed a combination of mitochondrial protection and neurotrophic support in two well-defined animal models of neurodegeneration, traumatic lesion of optic nerve and complete 6-hydroxydopamine (6-OHDA) lesion of nigrostriatal pathway. Neuroprotection by BclX(L), Glial cell line-derived neurotrophic factor (GDNF) or BclX(L) plus GDNF co-expression were studied at 2 weeks and at 6-8 weeks after lesions. In both lesion paradigms, the efficacy of this combination approach significantly differed depending on post-lesion time. We show that BclX(L) expression is more important for neuronal survival in the early phase after lesions, whereas GDNF-mediated neuroprotection becomes more prominent in the advanced state of neurodegeneration. BclX(L) expression was not sufficient to finally inhibit degeneration of deafferentiated central nervous system neurons. Long-lasting GDNF-mediated neuroprotection depended on BclX(L) co-expression in the traumatic lesion paradigm, but was independent of BclX(L) in the 6-OHDA lesion model. The results demonstrate that neuroprotection studies in animal models of neurodegenerative diseases should generally be performed over extended periods of time in order to reveal the actual potency of a therapeutic approach.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center