Send to

Choose Destination
Hum Mutat. 2006 Aug;27(8):830-1.

Missense mutation in the N-acetylglucosamine-1-phosphotransferase gene (GNPTA) in a patient with mucolipidosis II induces changes in the size and cellular distribution of GNPTG.

Author information

Department of Biochemistry, Children's Hospital, University Hospital Hamburg Eppendorf, Hamburg, Germany.


Mucolipidosis type II (ML II; I-cell disease) and mucolipidosis III (ML III; pseudo Hurler polydystrophy) are autosomal recessively inherited disorders caused by a defective N-acetylglucosamine 1-phosphotransferase (phosphotransferase). The formation of mannose 6-phosphate markers in soluble lysosomal enzymes is impeded leading to their increased excretion into the serum, to cellular deficiency of multiple hydrolases, and lysosomal storage of non-digested material. Phosphotransferase deficiency is caused by mutations in GNPTA and GNPTG encoding phosphotransferase subunits. Here we report on an adolescent with progressive joint contractions and other signs of mucolipidosis II who survived to the age of 14 years. Impaired trafficking of lysosomal enzymes cathepsin D and -hexosaminidase in metabolically labeled fibroblasts was documented. Mutations in the GNPTG gene and alterations in the GNPTG mRNA level were not detected. A different electrophoretic mobility of the 97 kDa GNPTG dimer suggested posttranslational modification abrogating the compartmentalization of GNPTG in the Golgi apparatus. A nucleotide substitution in the GNPTA gene (c.3707A>T) was identified altering the predicted C-terminal transmembrane anchor of the phosphotransferase subunit. The data demonstrate that defective GNPTA not only impairs lysosomal enzyme targeting but also the availability of intact GNPTG required for phosphotransferase activity and assembly of subunits.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center