Send to

Choose Destination
J Phys Chem A. 2005 Mar 10;109(9):1849-56.

Atmospheric chemistry of 4:2 fluorotelomer alcohol (n-C4F9CH2CH2OH): products and mechanism of Cl atom initiated oxidation in the presence of NOx.

Author information

Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark.


Smog chamber/FTIR techniques were used to study the Cl atom initiated oxidation of 4:2 fluorotelomer alcohol (C(4)F(9)CH(2)CH(2)OH, 4:2 FTOH) in the presence of NO(x) in 700 Torr of N(2)/O(2) diluent at 296 K. Chemical activation effects play an important role in the atmospheric chemistry of the peroxy, and possibly the alkoxy, radicals derived from 4:2 FTOH. Cl atoms react with C(4)F(9)CH(2)CH(2)OH to give C(4)F(9)CH(2)C(*)HOH radicals which add O(2) to give chemically activated alpha-hydroxyperoxy radicals, [C(4)F(9)CH(2)C(OO(*))HOH]*. In 700 Torr of N(2)/O(2) at 296 K, approximately 50% of the [C(4)F(9)CH(2)C(OO(*))HOH]* radicals decompose "promptly" to give HO(2) radicals and C(4)F(9)CH(2)CHO, the remaining [C(4)F(9)CH(2)C(OO(*))HOH]* radicals undergo collisional deactivation to give thermalized peroxy radicals, C(4)F(9)CH(2)C(OO(*))HOH. Decomposition to HO(2) and C(4)F(9)CH(2)CHO is the dominant atmospheric fate of the thermalized peroxy radicals. In the presence of excess NO, the thermalized peroxy radicals react to give C(4)F(9)CH(2)C(O(*))HOH radicals which then decompose at a rate >2.5 x 10(6) s(-1) to give HC(O)OH and the alkyl radical C(4)F(9)CH(2)(*). The primary products of 4:2 FTOH oxidation in the presence of excess NO(x) are C(4)F(9)CH(2)CHO, C(4)F(9)CHO, and HCOOH. Secondary products include C(4)F(9)CH(2)C(O)O(2)NO(2), C(4)F(9)C(O)O(2)NO(2), and COF(2). In contrast to experiments conducted in the absence of NO(x), there was no evidence (<2% yield) for the formation of the perfluorinated acid C(4)F(9)C(O)OH. The results are discussed with regard to the atmospheric chemistry of fluorotelomer alcohols.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center