Send to

Choose Destination
See comment in PubMed Commons below
J Struct Biol. 2006 Oct;156(1):2-11. Epub 2006 May 26.

Classification of AAA+ proteins.

Author information

  • 1Department of Protein Evolution, Max-Planck-Institute for Developmental Biology, D-72076 Tübingen, Germany.


AAA+ proteins form a large superfamily of P-loop ATPases involved in the energy-dependent unfolding and disaggregation of macromolecules. In a clustering study aimed at defining the AAA proteins within this superfamily, we generated a map of AAA+ proteins based on sequence similarity, which suggested higher-order groups. A classification based primarily on morphological characteristics, which was proposed at the same time, differed from the cluster map in several aspects, such as the position of RuvB-like helicases and the inclusion of divergent clades, such as viral SF3 helicases and plant disease resistance proteins (RFL1). Here, we establish the presence of an alpha-helical domain C-terminal to the ATPase domain (the C-domain) as characteristic for AAA+ proteins and re-evaluate all clades proposed to belong to this superfamily, based on this characteristic. We find that RFL1 and its homologs (APAF-1, CED-4, MalT, and AfsR) are AAA+ proteins and SF3 helicases are not. We also present a new and more comprehensive cluster map, which assigns a central position to RuvB and clarifies the relationships between the clades of the AAA+ superfamily.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center