Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2006 Jul 6;442(7098):59-62.

Resonance in the electron-doped high-transition-temperature superconductor Pr0.88LaCe0.12CuO4-delta.

Author information

Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996-1200, USA.


In conventional superconductors, the interaction that pairs the electrons to form the superconducting state is mediated by lattice vibrations (phonons). In high-transition-temperature (high-T(c)) copper oxides, it is generally believed that magnetic excitations might play a fundamental role in the superconducting mechanism because superconductivity occurs when mobile 'electrons' or 'holes' are doped into the antiferromagnetic parent compounds. Indeed, a sharp magnetic excitation termed 'resonance' has been observed by neutron scattering in a number of hole-doped materials. The resonance is intimately related to superconductivity, and its interaction with charged quasi-particles observed by photoemission, optical conductivity, and tunnelling suggests that it might play a part similar to that of phonons in conventional superconductors. The relevance of the resonance to high-T(c) superconductivity, however, has been in doubt because so far it has been found only in hole-doped materials. Here we report the discovery of the resonance in electron-doped superconducting Pr0.88LaCe0.12CuO4-delta (T(c) = 24 K). We find that the resonance energy (E(r)) is proportional to T(c) via E(r) approximately 5.8k(B)T(c) for all high-T(c) superconductors irrespective of electron- or hole-doping. Our results demonstrate that the resonance is a fundamental property of the superconducting copper oxides and therefore must be essential in the mechanism of superconductivity.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center