Format

Send to

Choose Destination
See comment in PubMed Commons below
Plant Cell Physiol. 2006 Aug;47(8):1081-94. Epub 2006 Jul 2.

Isolation and characterization of high temperature-resistant germination mutants of Arabidopsis thaliana.

Author information

1
Laboratory of Plant Molecular Physiology, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki 214-8571, Japan.

Abstract

Temperature is a primary environmental cue for seed germination of many weeds and vegetables. To investigate the mechanism of germination regulation by temperature, we selected five high temperature (thermoinhibition)-resistant germination mutants (TRW lines) from 20,000 T-DNA insertion lines of Arabidopsis. Segregation analyses indicated that each of the five lines had single locus recessive mutations. The seeds of TRW134-15 and TRW187 showed reduced sensitivity to ABA and also to the gibberrellin biosynthesis inhibitor, paclobutrazol. Genetic and nucleotide sequencing analyses indicated that TRW187 is a new allele of abi3 (abi3-14). TRW71-1 exhibited a maternal effect for both thermoinhibition-resistant and transparent testa phenotypes, and genetic analysis revealed that the mutation was allelic to tt7 (tt7-4 sib). Interestingly, the seeds of reduced dormancy mutants rdo1, rdo2, rdo3 and rdo4 were also thermoinhibition tolerant, and all the TRW seeds showed reduced dormancy. Like rdo3, TRW13-1 had shorter siliques and slightly shorter stems than the wild type. The mutation of TRW13-1 was mapped to the bottom arm of chromosome 1 where rdo3 has also been mapped, but the two mutants are not allelic. We designated TRW13-1 as thermoinhibition-resistant germination 1 (trg1). We also mapped the ABA-insensitive mutation of TRW134-15 to the bottom arm of chromosome 5 and named it trg2. These results show that both embryo/endosperm and maternal factors contribute to germination inhibition at supraoptimal temperatures in Arabidopsis. In addition, we confirm the role of ABA in thermoinhibition of seed germination and a link between seed physiological dormancy and response to high temperature.

PMID:
16816409
DOI:
10.1093/pcp/pcj078
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Silverchair Information Systems
    Loading ...
    Support Center