Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Sep 1;281(35):25551-9. Epub 2006 Jul 1.

Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy: Electron transfer from the FAD cofactor to ultraviolet-damaged DNA.

Author information

1
Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan.

Abstract

The cyclobutane pyrimidine dimer (CPD) and (6-4) photoproduct, two major types of DNA damage caused by UV light, are repaired under illumination with near UV-visible light by CPD and (6-4) photolyases, respectively. To understand the mechanism of DNA repair, we examined the resonance Raman spectra of complexes between damaged DNA and the neutral semiquinoid and oxidized forms of (6-4) and CPD photolyases. The marker band for a neutral semiquinoid flavin and band I of the oxidized flavin, which are derived from the vibrations of the benzene ring of FAD, were shifted to lower frequencies upon binding of damaged DNA by CPD photolyase but not by (6-4) photolyase, indicating that CPD interacts with the benzene ring of FAD directly but that the (6-4) photoproduct does not. Bands II and VII of the oxidized flavin and the 1398/1391 cm(-1) bands of the neutral semiquinoid flavin, which may reflect the bending of U-shaped FAD, were altered upon substrate binding, suggesting that CPD and the (6-4) photoproduct interact with the adenine ring of FAD. When substrate was bound, there was an upshifted 1528 cm(-1) band of the neutral semiquinoid flavin in CPD photolyase, indicating a weakened hydrogen bond at N5-H of FAD, and band X seemed to be downshifted in (6-4) photolyase, indicating a weakened hydrogen bond at N3-H of FAD. These Raman spectra led us to conclude that the two photolyases have different electron transfer mechanisms as well as different hydrogen bonding environments, which account for the higher redox potential of CPD photolyase.

PMID:
16816385
DOI:
10.1074/jbc.M604483200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center