Send to

Choose Destination
Trends Neurosci. 2006 Jul;29(7):349-358. doi: 10.1016/j.tins.2006.05.010. Epub 2006 Jun 30.

Searching for ways out of the autism maze: genetic, epigenetic and environmental clues.

Author information

Laboratory of Molecular Psychiatry and Neurogenetics, University 'Campus Bio-Medico', Via Longoni 83, I-00155, Rome, Italy; IRCCS 'Fondazione Santa Lucia', Department of Experimental Neurosciences, Via del Fosso di Fiorano 64/65, I-00143, Rome, Italy. Electronic address:
Laboratory of Human Genetics and Cognitive Functions, Institut Pasteur, 25 Rue du Docteur Roux 75015, Paris, France; University Paris VII, 2 Place Jussieu 75013, Paris, France.


Our understanding of human disorders that affect higher cognitive functions has greatly advanced in recent decades, and over 20 genes associated with non-syndromic mental retardation have been identified during the past 15 years. However, proteins encoded by "cognition genes" have such diverse neurodevelopmental functions that delineating specific pathogenetic pathways still poses a tremendous challenge. In this review, we summarize genetic, epigenetic and environmental contributions to neurodevelopmental alterations that either cause or confer vulnerability to autism, a disease primarily affecting social cognition. Taken together, these results begin to provide a unifying view of complex pathogenetic pathways that are likely to lead to autism spectrum disorders through altered neurite morphology, synaptogenesis and cell migration. This review is part of the INMED/TINS special issue "Nature and nurture in brain development and neurological disorders", based on presentations at the annual INMED/TINS symposium (

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center