Format

Send to

Choose Destination
J Org Chem. 2006 Jul 7;71(14):5282-90.

Solid-phase synthesis of m-phenylene ethynylene heterosequence oligomers.

Author information

1
Departments of Chemistry, Materials Science and Engineering and Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, IL 61801, USA.

Abstract

Both homo- and heterosequence m-phenylene ethynylene oligomers are synthesized using a conceptually simple iterative solid-phase strategy. Oligomers are attached to Merrifield's resin through a known triazene-type linkage. The phenylene ethynylene molecular backbone is constructed through a series of palladium-mediated cross-coupling reactions. The strategy employs two types of monomers that bear orthogonal reactivity, one being a monoprotected bisethynyl arene and the other being a 3-bromo-5-iodo arene. The catalyst conditions are tailored to the requirements of each monomer type. The monoprotected bisethynyl arene is coupled to the growing chain in 2 h at room temperature using a Pd(I) dimer precatalyst ((t)Bu3P(Pd(mu-Cl)(mu-2-methyl allyl)Pd)P(t)Bu3) in conjunction with ZnBr2 and diisopropylamine. In alternate steps, the resin is deprotected in situ with TBAF and coupled to the 3-bromo-5-iodo arene using the iodo selective Pd(tri-2-furylphosphine)4 catalyst in conjunction with CuI and piperidine; this reaction is also completed in 2 h at room temperature. These cross-coupling events are alternated until an oligomer of the desired length is achieved. The oligomer is then cleaved from the resin using CH(2)I(2)/I(2) at 110 degrees C and purified using preparatory GPC. Using this method, a series of homo- and heterosequence oligomers up to 12 units in length in excellent yield and purity were synthesized on the 100 mg scale. Longer oligomers were attempted; however, deletion sequences were found in oligomers longer than 12 units.

PMID:
16808517
DOI:
10.1021/jo0607212

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center