Format

Send to

Choose Destination
Kidney Int. 2006 Aug;70(4):641-6.

Increased expression of cyclooxygenase-2 in the renal cortex of human prorenin receptor gene-transgenic rats.

Author information

1
Department of Internal Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo, Japan.

Abstract

Increased macula densa cyclooxygenase-2 (COX-2) is observed in diabetic rats and may contribute to hyperfiltration states. However, the signals mediating increased COX-2 expression in diabetic rats remain undetermined. We recently found that non-proteolytic activation of prorenin by site-specific binding proteins, such as prorenin receptor, plays a pivotal role in the development of diabetic nephropathy. The present study was designed to determine the contribution of prorenin receptor to renal cortical COX-2 expression. The COX-2 mRNA and protein levels of six 4-week-old male wild-type rats and six human prorenin receptor gene-transgenic (hProRenRcTg) rats were measured by real-time polymerase chain reaction methods, Western blotting, and immunohistochemistry, and compared. There were no differences between the two groups in arterial pressure measured by telemetry, urinary sodium excretion, or renal levels of rat prorenin receptor mRNA. The renal cortical COX-2 mRNA levels of the hProRenRcTg rats were significantly higher than those of the wild-type rats, and the renal cortical COX-2 protein levels were also higher in hProRenRcTg rats than in the wild-type rats. Immunohistochemical analysis revealed that COX-2 immunostaining was predominantly present in the macula densa cells, and significantly more COX-2-positive cells were present in the hProRenRcTg rats than in the wild-type rats. In addition, COX-2 inhibition with NS398 significantly decreased renal cortical blood flow in the hProRenRcTg rats but not in the wild-type rats. These results strongly suggest that human prorenin receptor directly or indirectly contributes to the regulation of renal cortical COX-2 expression.

PMID:
16807542
DOI:
10.1038/sj.ki.5001627
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center