Format

Send to

Choose Destination

Defense of benthic invertebrates against surface colonization by larvae: a chemical arms race.

Author information

1
Department of Biological Sciences, California State University, Los Angeles, 5151 State University Dr., Los Angeles, CA 90032-8201, USA.

Abstract

Sessile invertebrates evolved in a competitive milieu where space is a limiting resource, setting off an arms race between adults that must maintain clean surfaces and larvae that must locate and attach to a suitable substratum. I review the evidence that invertebrates chemically deter or kill the propagules of fouling animals and protists under natural conditions, and that chemosensory mechanisms may allow larvae to detect and avoid settling on chemically protected organisms. The fouling process is an ecologically complex web of interactions between basibionts, surface-colonizing microbes, and fouling larvae, all mediated by chemical signaling. Host-specific bacterial communities are maintained by many invertebrates, and may inhibit fouling by chemical deterrence of larvae, or by preventing biofilm formation by inductive strains. Larval settlement naturally occurs in a turbulent environment, yet the effects of waterborne versus surface-adsorbed chemical defenses have not been compared in flow, limiting our understanding of how larvae respond to toxic surfaces in the field. The importance of evaluating alternative hypotheses such as mechanical and physical defense is discussed, as is the need for ecologically relevant bioassays that quantify effects on larval behavior and identify compounds likely to play a defensive role in situ.

PMID:
16805437
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center