Send to

Choose Destination
Microbiology. 2006 Jul;152(Pt 7):2111-27.

Global gene expression in Escherichia coli K-12 during short-term and long-term adaptation to glucose-limited continuous culture conditions.

Author information

Swiss Federal Institute for Aquatic Science and Technology, Dübendorf, Switzerland.


Microarray technology was used to study the cellular events that take place at the transcription level during short-term (physiological) and long-term (genetic) adaptation of the faecal indicator bacterium Escherichia coli K-12 to slow growth under limited nutrient supply. Short-term and long-term adaptation were assessed by comparing the mRNA levels isolated after 40 or 500 h of glucose-limited continuous culture at a dilution rate of 0.3 h(-1) with those from batch culture with glucose excess. A large number of genes encoding periplasmic binding proteins were upregulated, indicating that the cells are prepared for high-affinity uptake of all types of carbon sources during glucose-limited growth in continuous culture. All the genes belonging to the maltose (mal/lamB) and galactose (mgl/gal) operons were upregulated. A similar transcription pattern was observed for long-term cultures except that the expression factors were lower than in the short-term adaptation. The patterns of upregulation were confirmed by real-time RT-PCR. A switch from a fully operational citric acid cycle to the PEP-glyoxylate cycle was clearly observed in cells grown in glucose-limited continuous culture when compared to batch-grown cells and this was confirmed by transcriptome analysis. This transcriptome analysis confirms and extends the observations from previous proteome and catabolome studies in the authors' laboratory.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Ingenta plc
Loading ...
Support Center