Format

Send to

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10340-5. Epub 2006 Jun 26.

Monocyte accumulation in mouse atherogenesis is progressive and proportional to extent of disease.

Author information

1
Center for Molecular Imaging Research and Donald W. Reynolds Cardiovascular Clinical Research Center on Atherosclerosis at Harvard Medical School, Massachusetts General Hospital and Harvard Medical School, CNY 149, Charlestown, MA 02129, USA.

Abstract

Monocytes participate importantly in the pathogenesis of atherosclerosis, but their spatial and temporal recruitment from circulation remains uncertain. This study tests the hypothesis that monocyte accumulation in atheroma correlates with the extent of disease by using a sensitive and simple quantitative assay that allows tracking of highly enriched populations of blood monocytes. A two-step isolation method yielded viable and functionally intact highly enriched peripheral blood monocyte populations (>90%). Recipient mice received syngeneic monocytes labeled in two ways: by transgenically expressing EGFP or with a radioactive tracer [(111)In]oxine. After 5 days, more labeled cells accumulated in the aorta, principally the aortic root and ascending aorta, of 10-wk-old ApoE(-/-) compared with 10-wk-old C57BL/6 mice (223 +/- 3 vs. 87 +/- 22 cells per aorta). Considerably more monocytes accumulated in 20-wk-old ApoE(-/-) mice on either chow (314 +/- 41 cells) or high-cholesterol diet (395 +/- 53 cells). Fifty-week-old ApoE(-/-) mice accumulated even more monocytes in the aortic root, ascending aorta, and thoracic aorta after both chow (503 +/- 67 cells) or high-cholesterol diet (648 +/- 81 cells). Labeled monocyte content in the aorta consistently correlated with lesion surface area. These data indicate that monocytes accumulate continuously during atheroma formation, accumulation increases in proportion to lesion size, and recruitment is augmented with hypercholesterolemia. These results provide insights into mechanisms of atherogenesis and have implications for the duration of therapies directed at leukocyte recruitment.

PMID:
16801531
PMCID:
PMC1502459
DOI:
10.1073/pnas.0604260103
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center