Send to

Choose Destination
Br J Pharmacol. 2006 Aug;148(8):1091-8. Epub 2006 Jun 26.

H-89 inhibits transient outward and inward rectifier potassium currents in isolated rat ventricular myocytes.

Author information

School of Clinical Sciences, University of Liverpool, Daulby Street, Liverpool L69 3GA.


1. Voltage clamp was used to investigate the effects of N-[2-p-bromo-cinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), a potent inhibitor of PKA, on transient outward K(+) current (I(to)) and inward rectifying K(+) current (I(K1)) in rat cardiac muscle. 2. Initial experiments, performed using descending voltage ramps, showed that H-89 inhibited both the outward and inward ramp currents in a concentration-dependent manner at concentrations between 5 and 60 micromol l(-1). A similar degree of inhibition was observed when I(to) and I(K1) were recorded using square wave depolarising and hyperpolarising voltage steps, respectively. 3. The IC(50) was 35.8 micromol l(-1) for I(to) and 27.8 micromol l(-1) for I(K1) compared to 5.4 micromol l(-1) for L-type Ca(2+) current (I(Ca)). The Hill coefficients for I(to), I(K1) and I(Ca) were -1.97, -1.60 and -1.21, respectively. In addition to inhibiting I(to) amplitude, H-89 also accelerated the time to peak and the rate of voltage-dependent inactivation so that the time course of I(to) was abbreviated. 4. Paired-pulse protocols were performed to study the effects of H-89 on steady-state activation and inactivation as well as recovery from voltage-dependent inactivation. H-89 produced a concentration-dependent rightward shift in voltage-dependent activation but had no significant effect on steady-state inactivation. Recovery from voltage-dependent inactivation was delayed, although this was only visible at the highest concentration (60 micromol l(-1)) used. In experiments investigating the effects of elevated cyclic AMP, the beta-adrenergic agonist isoprenaline and the phosphatase inhibitor calyculin A had no major effects on I(to) or I(K1). 6. Data suggest that the effects of H-89 on K(+) currents are more complex than simple inhibition of PKA-mediated phosphorylation.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center