Send to

Choose Destination
Oncogene. 2006 Dec 7;25(58):7597-607. Epub 2006 Jun 26.

Tamoxifen treatment promotes phosphorylation of the adhesion molecules, p130Cas/BCAR1, FAK and Src, via an adhesion-dependent pathway.

Author information

Focal Adhesion Biology Group, The Oncology Research Unit, The Children's Hospital at Westmead, and Discipline of Paediatrics and Child Health, University of Sydney, Westmead, New South Wales, Australia.


Reports that the adhesion-associated molecule p130Cas/BCAR1 promotes resistance to tamoxifen suggested that adhesion-mediated signalling may be altered by tamoxifen treatment. We find that p130Cas/BCAR1 phosphorylation is enhanced in tamoxifen-treated estrogen receptor (ER)-positive MCF-7 breast cancer cells. The effects of estrogen and tamoxifen were assessed independently and in combination, and the results demonstrate that tamoxifen antagonizes estrogen regulation of p130Cas/BCAR1 phosphorylation. Phosphorylation correlates with tamoxifen ER antagonist effects, as phosphorylation effects are replicated by the pure antiestrogen ICI 182, 780. Correspondingly, phosphorylation is not changed in ER-negative cells exposed to tamoxifen. We show that deletion of the p130Cas/BCAR1 substrate domain substantially reduces tamoxifen-induced phosphorylation of p130Cas/BCAR1 and confers enhanced sensitivity to tamoxifen. P130Cas/BCAR1 forms a phosphorylation-dependent signalling complex with focal adhesion kinase (FAK) and Src kinase that promotes adhesion-mediated cell survival. Therefore, we examined the kinetics of p130Cas/BCAR1, Src and FAK phosphorylation over a 14-day time course and find sustained phosphorylation of these molecules after 7 days exposure to tamoxifen. Inhibition of Src kinase is shown to reduce tamoxifen-promoted p130Cas/BCAR1 phosphorylation and reduce cell viability. Stimulation of the Src/FAK/p130Cas/BCAR1 adhesion signalling pathway in tamoxifen-treated MCF-7 cells does not cause increased migration; however, there is Src-dependent phosphorylation of the cell survival molecule Akt. Correspondingly, Akt inhibition reduces cell viability in cells treated with tamoxifen. We propose that prolonged activation of adhesion-dependent signalling may confer a survival advantage in response to additional cellular insults or alternatively, may poise cells to develop a migratory phenotype in response to additional cellular cues.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center