Format

Send to

Choose Destination
Nat Cell Biol. 2006 Jul;8(7):700-10. Epub 2006 Jun 25.

Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology.

Author information

1
Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.

Erratum in

  • Nat Cell Biol. 2006 Aug;8(8):896.

Abstract

Protein ubiquitination regulates many cellular processes, including protein degradation, signal transduction, DNA repair and cell division. In the classical model, a uniform polyubiquitin chain that is linked through Lys 48 is required for recognition and degradation by the 26S proteasome. Here, we used a reconstituted system and quantitative mass spectrometry to demonstrate that cyclin B1 is modified by ubiquitin chains of complex topology, rather than by homogeneous Lys 48-linked chains. The anaphase-promoting complex was found to attach monoubiquitin to multiple lysine residues on cyclin B1, followed by poly-ubiquitin chain extensions linked through multiple lysine residues of ubiquitin (Lys 63, Lys 11 and Lys 48). These heterogeneous ubiquitin chains were sufficient for binding to ubiquitin receptors, as well as for degradation by the 26S proteasome, even when they were synthesized with mutant ubiquitin that lacked Lys 48. Together, our observations expand the context of what can be considered to be a sufficient degradation signal and provide unique insights into the mechanisms of substrate ubiquitination.

PMID:
16799550
DOI:
10.1038/ncb1436
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Nature Publishing Group
Loading ...
Support Center