Format

Send to

Choose Destination
Syst Appl Microbiol. 2007 Mar;30(2):128-38. Epub 2006 Jun 21.

Analysis of denitrification genes and comparison of nosZ, cnorB and 16S rDNA from culturable denitrifying bacteria in potato cropping systems.

Author information

1
Potato Research Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada E3B 4Z7.

Abstract

Bacterial denitrification in agricultural soils is a major source of nitrous oxide, a potent greenhouse gas. This study examined the culturable bacterial population of denitrifiers in arable field soils in potato (Solanum tuberosum L.) production and denitrification genes (nir, nor and nos) and 16S rDNA in those isolates. Enrichments for culturable denitrifiers yielded 31 diverse isolates that were then analysed for denitrification genes. The nitrous oxide reductase (nosZ) gene was found in all isolates. The majority of isolates ( approximately 90%) contained the cnorB nitric oxide reductase gene, with the remainder containing the qnorB gene. Nitrite reductase genes (nirS and nirK) were amplifiable from most of the isolates, and were segregated between species similar to previously isolated denitrifiers. Isolated strains were preliminarily identified using fatty acid methyl ester analysis and further identified using 16S rDNA sequencing. The majority of isolates (21) were classified as Pseudomonas sp., with smaller groups of isolates being most similar to Bosea spp. (4), Achromobacter spp. (4) and two isolates closely related to Sinorhizobium/Ensifer spp. Phylogenetic trees were compared among nosZ, cnorB and 16S rDNA genes for a subset of Pseudomonas strains. The trees were mostly congruent, but some Pseudomonas sp. isolates grouped differently depending on the gene analysed, indicating potential horizontal gene transfer of denitrification genes. Although Bosea spp. are known denitrifiers, to the best of our knowledge this is the first report of isolation and sequencing of denitrification genes from this bacterial genus.

PMID:
16793234
DOI:
10.1016/j.syapm.2006.05.002
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances, Secondary source ID

Publication type

MeSH terms

Substances

Secondary source ID

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center