Format

Send to

Choose Destination
Am J Physiol. 1991 Aug;261(2 Pt 2):R427-33.

Interaction of hypothalamic GABAA and excitatory amino acid receptors controlling heart rate in rats.

Author information

1
Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis 46202.

Abstract

We have previously shown that microinjection of drugs that impair gamma-aminobutyric acid (GABA)-mediated synaptic inhibition into the dorsomedial hypothalamus (DMH) of rats generates cardiovascular and behavioral changes that mimic the response to stress. The purpose of this study was to examine the role of excitatory amino acid (EAA) receptors in the DMH in generating the cardiovascular changes caused by withdrawal of local GABAergic inhibition in urethan-anesthetized rats. Local treatment of the DMH with the nonselective EAA antagonist kynurenic acid blocked or reversed the increases in heart rate and blood pressure caused by microinjection of the GABAA antagonists bicuculline methiodide (BMI) or picrotoxin into the same region. Conversely, similar injection of xanthurenic acid, a structural analogue of kynurenic acid without significant effects on EAA receptors, did not significantly alter the cardiovascular changes produced by either GABAA antagonist. The tachycardic effects of BMI were also attenuated by injection of either the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid or the non-NMDA EAA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione. When the two EAA receptor antagonists were combined, their effects to suppress the BMI-induced tachycardia were additive. These findings suggest that the cardiovascular effects caused by blockade of GABAergic inhibition in the DMH of the rat are dependent on activation of local NMDA and non-NMDA EAA receptors.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center