Format

Send to

Choose Destination
See comment in PubMed Commons below
Curr Top Med Chem. 2006;6(10):935-40.

Extracellular level of GABA and Glu: in vivo microdialysis-HPLC measurements.

Author information

  • 1Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Hungary. nyitraig@chemres.hu

Abstract

In spite of several studies showing specific physiological functions of changes in the extracellular level of the major excitatory and inhibitory transmitters, Glu and GABA within the brain ([Glu](EXT), [GABA](EXT)) the exact origin (neuronal vs. astroglial, synaptic vs. extrasynaptic) of Glu and GABA present in dialysate samples is still a matter of debate. For better understanding the significance of in vivo microdialysis data, here we discuss methodological details and problems in addition to regulation of [Glu](EXT) and [GABA](EXT). Changes in [Glu](EXT) and [GABA](EXT) under pathological conditions such as ischemia and epilepsy are also reviewed. Based on recent in vivo microdialysis data we argue that ambient [Glu](EXT) and [GABA](EXT)may have a functional role. It is suggested that specific changes in concentrations of Glu and GABA in dialysate samples together with their alterations independent of neuronal activity indicate the involvement of Glu and GABA in the information processing of the brain as essential signaling molecules of nonsynaptic transmission as well. Since various drugs are able to interfere with extrasynaptic signals in vivo, studying the extracellular cell-to-cell communication of brain cells represents a new aspect to improve drugs modulating Gluergic as well as GABAergic neurotransmission.

PMID:
16787267
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Bentham Science Publishers Ltd.
    Loading ...
    Support Center