Format

Send to

Choose Destination
Arch Biochem Biophys. 2006 Jul 15;451(2):128-40. Epub 2006 May 24.

Molecular organization of peroxisomal enzymes: protein-protein interactions in the membrane and in the matrix.

Author information

1
The Charles Darby Children's Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA.

Abstract

The beta-oxidation of fatty acids in peroxisomes produces hydrogen peroxide (H2O2), a toxic metabolite, as a bi-product. Fatty acids beta-oxidation activity is deficient in X-linked adrenoleukodystrophy (X-ALD) because of mutation in ALD-gene resulting in loss of very long chain acyl-CoA synthetase (VLCS) activity. It is also affected in disease with catalase negative peroxisomes as a result of inactivation by H2O2. Therefore, the following studies were undertaken to delineate the molecular interactions between both the ALD-gene product (adrenoleukodystrophy protein, ALDP) and VLCS as well as H2O2 degrading enzyme catalase and proteins of peroxisomal beta-oxidation. Studies using a yeast two hybrid system and surface plasmon resonance techniques indicate that ALDP, a peroxisomal membrane protein, physically interacts with VLCS. Loss of these interactions in X-ALD cells may result in a deficiency in VLCS activity. The yeast two-hybrid system studies also indicated that catalase physically interacts with L-bifunctional enzyme (L-BFE). Interactions between catalase and L-BFE were further supported by affinity purification, using a catalase-linked resin. The affinity bound 74-kDa protein, was identified as L-BFE by Western blot with specific antibodies and by proteomic analysis. Additional support for their interaction comes from immunoprecipitation of L-BFE with antibodies against catalase as a catalase- L-BFE complex. siRNA for L-BFE decreased the specific activity and protein levels of catalase without changing its subcellular distribution. These observations indicate that L-BFE might help in oligomerization and possibly in the localization of catalase at the site of H2O2 production in the peroxisomal beta-oxidation pathway.

PMID:
16781659
DOI:
10.1016/j.abb.2006.05.003
[Indexed for MEDLINE]

Publication type, MeSH terms, Substances, Grant support

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center