Format

Send to

Choose Destination
BMC Bioinformatics. 2006 Jun 16;7:308.

Identification of QTLs controlling gene expression networks defined a priori.

Author information

1
University of California-Davis, Department of Plant Sciences, Mail Stop 3, One Shields Ave, Davis, CA 95616-8780, USA. kliebenstein@ucdavis.edu

Abstract

BACKGROUND:

Gene expression microarrays allow the quantification of transcript accumulation for many or all genes in a genome. This technology has been utilized for a range of investigations, from assessments of gene regulation in response to genetic or environmental fluctuation to global expression QTL (eQTL) analyses of natural variation. Current analysis techniques facilitate the statistical querying of individual genes to evaluate the significance of a change in response, also known as differential expression. Since genes are also known to respond as groups due to their membership in networks, effective approaches are needed to investigate transcriptome variation as related to gene network responses.

RESULTS:

We describe a statistical approach that is capable of assessing higher-order a priori defined gene network response, as measured by microarrays. This analysis detected significant network variation between two Arabidopsis thaliana accessions, Bay-0 and Shahdara. By extending this approach, we were able to identify eQTLs controlling network responses for 18 out of 20 a priori-defined gene networks in a recombinant inbred line population derived from accessions Bay-0 and Shahdara.

CONCLUSION:

This approach has the potential to be expanded to facilitate direct tests of the relationship between phenotypic trait and transcript genetic architecture. The use of a priori definitions for network eQTL identification has enormous potential for providing direction toward future eQTL analyses.

PMID:
16780591
PMCID:
PMC1540440
DOI:
10.1186/1471-2105-7-308
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for BioMed Central Icon for PubMed Central
Loading ...
Support Center