Send to

Choose Destination
See comment in PubMed Commons below

Modeling clinical judgment and implicit guideline compliance in the diagnosis of melanomas using machine learning.

Author information

ITC-irst and University of Trento, University of Trento, Italy.


We explore several machine learning techniques to model clinical decision making of 6 dermatologists in the clinical task of melanoma diagnosis of 177 pigmented skin lesions (76 malignant, 101 benign). In particular we apply Support Vector Machine (SVM) classifiers to model clinician judgments, Markov Blanket and SVM feature selection to eliminate clinical features that are effectively ignored by the dermatologists, and a novel explanation technique whereby regression tree induction is run on the reduced SVM model's output to explain the physicians' implicit patterns of decision making. Our main findings include: (a) clinician judgments can be accurately predicted, (b) subtle decision making rules are revealed enabling the explanation of differences of opinion among physicians, and (c) physician judgment is non-compliant with the diagnostic guidelines that physicians self-report as guiding their decision making.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for PubMed Central
    Loading ...
    Support Center