Send to

Choose Destination
See comment in PubMed Commons below
Biochem Biophys Res Commun. 2006 Jul 28;346(2):612-7. Epub 2006 Jun 6.

A primary sodium pump gene of the moderate halophile Halobacillus dabanensis exhibits secondary antiporter properties.

Author information

Department of Microbiology and Immunology, College of Biological Sciences, China Agricultural University, Key Laboratory of Agro-Microbial Resource and Application of Ministry of Agriculture, Beijing.


The primary sodium pump has been proved to be involved in Na(+) extrusion of bacteria. In our present study, a novel gene encoding a putative primary sodium pump was cloned from chromosomal DNA of moderate halophile Halobacillus dabanensis D-8 by functional complementation, which expression resulted in the growth of antiporter-deficient Escherichia coli strain KNabc in the presence of 0.2 M NaCl. The gene was sequenced and designated nap. The deduced amino acid sequence of Nap has 56% identity to NADH dehydrogenase of Bacillus cereus and 55% to NADH oxidase of Bacillus halodurans C-125. E. coli KNabc carrying nap exhibited resistance to uncoupler CCCP (carbonyl-cyanide m-chlorophenylhydrazone). Everted membrane vesicles prepared from E. coli KNabc carrying nap exhibited secondary Na(+)/H(+) antiporter activity, and nap also supported the growth of respiratory-deficient E. coli ANN0222 lacking NADH dehydrogenase. Based on these results, we proposed that Nap possessed both characteristics of secondary Na(+)/H(+) antiporter and primary sodium pump.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons


    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center