Format

Send to

Choose Destination
See comment in PubMed Commons below
J Chem Phys. 2006 Jun 7;124(21):214301.

Photoionization of helium nanodroplets doped with rare gas atoms.

Author information

1
Department of Chemistry, University of California, Berkeley, California 94720, USA.

Abstract

Photoionization of He droplets doped with rare gas atoms (Rg=Ne, Ar, Kr, and Xe) was studied by time-of-flight mass spectrometry, utilizing synchrotron radiation from the Advanced Light Source from 10 to 30 eV. High resolution mass spectra were obtained at selected photon energies, and photoion yield curves were measured for several ion masses (or ranges of ion masses) over a wide range of photon energies. Only indirect ionization of the dopant rare gas atoms was observed, either by excitation or charge transfer from the surrounding He atoms. Significant dopant ionization from excitation transfer was seen at 21.6 eV, the maximum of He 2p 1P absorption band for He droplets, and from charge transfer above 23 eV, the threshold for ionization of pure He droplets. No Ne+ or Ar+ signal from droplet photoionization was observed, but peaks from HenNe+ and HenAr+ were seen that clearly originated from droplets. For droplets doped with Rg=Kr or Xe, both Rg+ and HenRg+ ions were observed. For all rare gases, Rg2+ and HenRgm+ (n,m> or =1) were produced by droplet photoionization. Mechanisms of dopant ionization and subsequent dynamics are discussed.

PMID:
16774401
DOI:
10.1063/1.2202313
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Institute of Physics
    Loading ...
    Support Center