Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Diagn Ther. 2006;10(3):135-51.

The AmpliChip CYP450 genotyping test: Integrating a new clinical tool.

Author information

  • 1University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, Kentucky 40508, USA. jdeleon@uky.edu

Abstract

The AmpliChip CYP450 Test, which analyzes patient genotypes for cytochrome P450 (CYP) genes CYP2D6 and CYP2C19, is a major step toward introducing personalized prescribing into the clinical environment. Interest in adverse drug reactions (ADRs), the genetic revolution, and pharmacogenetics have converged with the introduction of this tool, which is anticipated to be the first of a new wave of such tools to follow over the next 5-10 years. The AmpliChip CYP450 Test is based on microarray technology, which combines hybridization in precise locations on a glass microarray and a fluorescent labeling system. It classifies individuals into two CYP2C19 phenotypes (extensive metabolizers [EMs] and poor metabolizers [PMs]) by testing three alleles, and into four CYP2D6 phenotypes (ultrarapid metabolizers [UMs], EMs, intermediate metabolizers [IMs], and PMs) by testing 27 alleles, including seven duplications. CYP2D6 is a metabolic enzyme with four activity levels (or phenotypes): UMs with unusually high activity; normal subjects, known as EMs; IMs with low activity; and PMs with no CYP2D6 activity (7% of Caucasians and 1-3% in other ethnic groups). Levels of evidence for the association between CYP2D6 PMs and ADRs are relatively reasonable and include systematic reviews of case-control studies of some typical antipsychotics and tricyclic antidepressants (TCAs). Evidence for other phenotypes is considerably more limited. The CYP2D6 PM phenotype may be associated with risperidone ADRs and discontinuation due to ADRs. Venlafaxine, aripiprazole, duloxetine, and atomoxetine are newer drugs metabolized by CYP2D6 but studies of the clinical relevance of CYP2D6 genotypes are needed. Non-psychiatric drugs metabolized by CYP2D6 include metoprolol, tamoxifen, and codeine-like drugs. CYP2C19 PMs (3-4% of Caucasians and African Americans, and 14-21% of Asians) may require dose adjustment for some TCAs, moclobemide, and citalopram. Other drugs metabolized by CYP2C19 are diazepam and omeprazole. The future of pharmacogenetics depends on the ability to overcome serious obstacles, including the difficulties of conducting and publishing studies in light of resistance from grant agencies, pharmaceutical companies, and some scientific reviewers. Assuming more studies are published, pharmacogenetic clinical applications may be compromised by economic factors and the lack of physician education. The combination of a US FDA-approved test, such as the AmpliChip CYP450 Test, and an FDA definition of CYP2D6 as a 'valid biomarker' makes CYP2D6 genotyping a prime candidate to be the first successful pharmacogenetic test in the clinical environment. One can use microarray technology to test for hundreds of single nucleotide polymorphisms (SNPs) but, taking into account the difficulties for single gene approaches such as CYP2D6, it is unlikely that very complex pharmacogenetic approaches will reach the clinical market in the next 5-10 years.

PMID:
16771600
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center