Adsorption and photophysics of fullerene C60 at liquid-zeolite particle interfaces: unusually high affinity for hydrophobic, ultrastabilized zeolite Y

J Phys Chem B. 2006 Jun 15;110(23):11406-14. doi: 10.1021/jp061577r.

Abstract

Adsorption of fullerene C60 from solution to the external surface of zeolite particles has been investigated. The most intriguing result of this study was the nature of C60 adsorption to ultrastablized zeolite Y (or USY). Two commercial samples of USY were tested: CBV780 (Y780) and CBV901 (Y901). Y901 was shown in previous reports to be more hydrophobic than Y780. Higher affinity of C60 for Y901 was found relative to Y780 in a variety of hydrocarbon solvents, including toluene and cyclohexane. In these same solvents, weak or no affinity for Y901 of typical arenes such as naphthalene or pyrene was observed. In toluene, adsorption isotherms for C60 gave dissociation constants (and values of saturation binding) = 0.5 microM (5.8 micromol g(-1)) and 8 microM (1.4 micromol g(-1)) for Y901 and Y780, respectively. C60 was estimated to cover nearly one-half of the estimated external surface area of Y901 particles at saturation. Significant adsorption of C60 to the ionic zeolites NaX, NaY, and KL was observed in cyclohexane but not in toluene, consistent with the pi-cation effect as a driving force for adsorption to these materials. The main driving force for C60 adsorption to Y901 is postulated to involve the interaction of C60 with lone pair electrons of framework oxygen atoms of the 12-ring entry aperture to the supercage. In the 12-ring site, C60 is located in half-supercage bowls on the exterior particle surface. The adsorptive interaction on Y901 relies on the spherical shape of C60 and the hydrophobicity of the zeolite surface. On ionic zeolites, the presence of specific adsorption sites such as exchangeable cations and hydroxyl groups hinder the special positioning necessary for C60 interaction with the 12-ring site. The ground-state and triplet-state absorption spectrum of adsorbed C60 was solution-like on all zeolites. Quenching of the C60 triplet state was examined by using transient absorption spectroscopy. Rate constants for quenching by rubrene, ferrocene, and O2 at the Y901-toluene interface were 18, 9, and 3 times lower, respectively, relative to rate constants in solution. These differences point out that the approach of molecular quenchers to C60 at the interface is more hindered for larger molecules, an expected result for C60 located in half-supercage bowls. The high affinity of fullerenes for hydrophobic zeolite Y provides a strategy for organizing fullerenes at interfaces and for studies of fullerene photochemistry.