Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2006 Aug 4;281(31):21869-77. Epub 2006 Jun 8.

Metabolic profiling of glycerophospholipid synthesis in fibroblasts loaded with free cholesterol and modified low density lipoproteins.

Author information

  • 1Institute of Clinical Chemistry, University of Regensburg, 93042 Regensburg, Germany.

Abstract

Currently, the detailed regulation of major pathways of glycerophospholipid synthesis upon cholesterol loading is largely unknown. Therefore, a detailed lipid metabolic profiling using stable isotope-labeled choline, ethanolamine, and serine was performed by quantitative electrospray ionization tandem mass spectrometry (ESI-MS/MS) in free cholesterol (FC), oxidized (Ox-LDL) and enzymatically modified LDL (E-LDL)-loaded primary human skin fibroblasts. As previously described, an adaptive induction of phosphatidylcholine (PC) synthesis via CDP-choline was found upon FC loading. In contrast to PC, CDP-ethanolamine-mediated phosphatidylethanolamine (PE) synthesis was inhibited by FC incubation. Furthermore, FC induced a shift toward polyunsaturated PE and PC species, which was mediated primarily by PE biosynthesis but not PE remodeling, whereas PC species were shifted mainly by fatty acid (FA) remodeling of existing PC. Modified lipoprotein incubation revealed rather different effects on glycerophospholipid synthesis. E-LDL greatly enhanced PC synthesis, whereas Ox-LDL did not change PC synthesis. Addition of different free FAs (FFA) with and without FC coincubation, as major components of E-LDL, clearly indicated an incorporation of FFA into newly synthesized PC and PE species as well as FFA as important driving force for PC synthesis. Because FC and FFA are known to affect lipid membrane properties including membrane curvature, these data support that CTP:phosphocholine cytidylyl-transferase activity and consequently PC synthesis are regulated by modulation of membrane characteristics at the cellular level. In conclusion, the application of high throughput metabolic profiling of major glycerophospholipid pathways by ESI-MS/MS is a powerful tool to unravel mechanisms underlying the regulation of cellular lipid metabolism.

PMID:
16766520
DOI:
10.1074/jbc.M603025200
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center