Send to

Choose Destination
See comment in PubMed Commons below
Exp Neurol. 2006 Sep;201(1):244-52. Epub 2006 Jun 9.

BMAA selectively injures motor neurons via AMPA/kainate receptor activation.

Author information

  • 1Department of Anatomy and Neurobiology, 2101 Gillespie Building, University of California, Irvine, Irvine, CA 92697-4292, USA.


The toxin beta-methylamino-l-alanine (BMAA) has been proposed to contribute to amyotrophic lateral sclerosis-Parkinsonism Dementia Complex of Guam (ALS/PDC) based on its ability to induce a similar disease phenotype in primates and its presence in cycad seeds, which constituted a dietary item in afflicted populations. Concerns about the apparent low potency of this toxin in relation to estimated levels of human ingestion led to a slowing of BMAA research. However, recent reports identifying potential new routes of exposure compel a re-examination of the BMAA/cycad hypothesis. BMAA was found to induce selective motor neuron (MN) loss in dissociated mixed spinal cord cultures at concentrations ( approximately 30 muM) significantly lower than those previously found to induce widespread neuronal degeneration. The glutamate receptor antagonist NBQX prevented BMAA-induced death, implicating excitotoxic activation of AMPA/kainate receptors. Using microfluorimetric techniques, we further found that BMAA induced preferential [Ca(2+)](i) rises and selective reactive oxygen species (ROS) generation in MNs with minimal effect on other spinal neurons. Cycad seed extracts also triggered preferential AMPA/kainate-receptor-dependent MN injury, consistent with the idea that BMAA is a crucial toxic component in this plant. Present findings support the hypothesis that BMAA may contribute to the selective MN loss in ALS/PDC.

[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances, Grant Support

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center