Format

Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2006 Oct 1;108(7):2248-56. Epub 2006 Jun 8.

A critical role for the transcription factor Scl in platelet production during stress thrombopoiesis.

Author information

1
Bone Marrow Research Laboratories, Royal Melbourne Hospital, Melbourne Health Research Directorate, c/o Royal Melbourne Hospital Post Office, Grattan St, Parkville VIC 3050 Australia.

Abstract

The generation of platelets from megakaryocytes in the steady state is regulated by a variety of cytokines and transcription factors, including thrombopoietin (TPO), GATA-1, and NF-E2. Less is known about platelet production in the setting of stress thrombopoiesis, a pivotal event in the context of cytotoxic chemotherapy. Here we show in mice that the transcription factor Scl is critical for platelet production after chemotherapy and in thrombopoiesis induced by administration of TPO. Megakaryocytes from these mice showed appropriate increases in number and ploidy but failed to shed platelets. Ultrastructural examination of Scl-null megakaryocytes revealed a disorganized demarcation membrane and reduction in platelet granules. Quantitative real-time polymerase chain reaction showed that Scl-null platelets lacked NF-E2, and chromatin immunoprecipitation analysis demonstrated Scl binding to the NF-E2 promoter in the human megakaryoblastic-cell line Meg-01, along with its binding partners E47, Lmo2, and the cofactors Ldb1 and GATA-2. These findings suggest that Scl acts up-stream of NF-E2 expression to control megakaryocyte development and platelet release in settings of thrombopoietic stress.

PMID:
16763211
PMCID:
PMC1895552
DOI:
10.1182/blood-2006-02-002188
[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center