Send to

Choose Destination
Arterioscler Thromb Vasc Biol. 2006 Aug;26(8):1753-9. Epub 2006 Jun 8.

NADPH oxidase accounts for enhanced superoxide production and impaired endothelium-dependent smooth muscle relaxation in BKbeta1-/- mice.

Author information

II.Medizinische Klinik, Johannes Gutenberg-Universität Mainz, Langenbeckstrasse 1, D-55131 Mainz, Germany.



Nitric oxide (NO)-induced vasorelaxation involves activation of large conductance Ca2+-activated K+ channels (BK). A regulatory BKbeta1 subunit confers Ca2+, voltage, and NO/cGMP sensitivity to the BK channel. We investigated whether endothelial function and NO/cGMP signaling is affected by a deletion of the beta1-subunit.


Vascular superoxide in BKbeta1-/- was measured using the fluorescent dye hydroethidine and lucigenin-enhanced chemiluminescence. Vascular NO formation was analyzed using electron paramagnetic resonance (EPR), expression of NADPH oxidase subunits, the endothelial NO synthase (eNOS), the soluble guanylyl cyclase (sGC), as well as the activity and expression of the cyclic GMP-dependent kinase I (cGK-I) were assessed by Western blotting technique. eNOS, sGC, cGK-I expression and acetylcholine-induced NO production were unaltered in Bkbeta1-/- animals, whereas endothelial function was impaired and the activity of the cGK-I was reduced. Vascular O2- and expression of the NADPH oxidase subunits p67phox and Nox1 were increased. Endothelial dysfunction was normalized by the NADPH oxidase inhibitor apocynin. Potassium chloride- and iberiotoxin-induced depolarization mimicked the effect of BKbeta1-deletion by increasing vascular O2- in an NADPH-dependent fashion.


The deletion of BKbeta1 causes endothelial dysfunction by increasing O2- formation via increasing activity and expression of the vascular NADPH oxidase.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center