Format

Send to

Choose Destination
Mycopathologia. 2006 Jun;161(6):377-84.

Susceptibility of larvae of Galleria mellonella to infection by Aspergillus fumigatus is dependent upon stage of conidial germination.

Author information

1
Department of Biology, NUI Maynooth, Medical Mycology Unit, National Institute for Cellular Biotechnology, Co., Kildare, Ireland.

Abstract

The ability of conidia of the human pathogenic fungus Aspergillus fumigatus to kill larvae of the insect Galleria mellonella was investigated. Conidia at different stages of the germination process displayed variations in their virulence as measured using the Galleria infection model. Non-germinating ('resting') conidia were avirulent except when an inoculation density of 1 x 10(7) conidia per insect was used. Conidia that had been induced to commence the germination process by pre-culturing in growth medium for 3 h were capable of killing larvae at densities of 1 x 10(6) and 1 x 10(7) per insect. An inoculation density of 1 x 10(5) conidia per insect remained avirulent. Conidia in the outgrowth phase of germination (characterised as the formation of a germ tube) were the most virulent and were capable of killing 100% of larvae after 5 or 24 h when 1 x 10(7) or 1 x 10(6) conidia, that had been allowed to germinate for 24 h, were used. Examination of the response of insect haemocytes to conidia at different stages of the germination process established that haemocytes could engulf non-germinating conidia and those in the early stages of the germination process but that conidia, which had reached the outgrowth stages of germination were not phagocytosed. The results presented here indicate that haemocytes of G. mellonella are capable of phagocytosing A. fumigatus conidia less than 3.0 microm in diameter but that conidia greater than this are too large to be engulfed. The virulence of A. fumigatus in G. mellonella larvae can be ascertained within 60-90 h if infection densities of 1 x 10(6) or 1 x 10(7) activated conidia (pre-incubated for 2-3 h) per insect are employed.

PMID:
16761185
DOI:
10.1007/s11046-006-0021-1
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center