Send to

Choose Destination
See comment in PubMed Commons below
J Biomed Mater Res A. 2006 Oct;79(1):86-93.

The effects of embedding material, loading rate and magnitude, and penetration depth in nanoindentation of trabecular bone.

Author information

  • 1Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, USA.


Understanding the pathophysiology of metabolic bone disease requires the characterization of both the quantity as well as the quality (i.e., microarchitecture and material properties) of the bone tissue. Nanoindentation provides a powerful yet simple method to measure the nano/micro mechanical properties of bone, but no uniform testing methodology exists. This study examines the effects of embedding materials, rate and depth of indentation, and storage time on the measured modulus. Nineteen trabecular bone samples were evaluated for the study. Although there was an 8-fold increase in the stiffness of the soft to hard epoxy, bone tissue modulus was not affected by the stiffness of the embedding materials, but hardness was affected by both the embedding material modulus, for example from 0.70 +/- 0.20 GPa (ME(low)) to 0.45 +/- 0.21 GPa (ME(Med)) (p < 0.01), and viscosity (p < 0.01). No significant differences were found with regard to the tested rates and depths of indentation for either elastic modulus or hardness. The tissue modulus tested at the 6-month time point was significantly greater in comparison with that tested at 0 or 3 months (p < 0.01). The hardness, however, did not significantly change over the span of 6 months. The results show that while nanoindentation is powerful, it is particularly sensitive to certain testing variables.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center