Send to

Choose Destination
See comment in PubMed Commons below
Methods Enzymol. 2006;407:195-217.

Genetic and pharmacologic dissection of Ras effector utilization in oncogenesis.

Author information

  • 1Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA.


Ras proteins function as signaling nodes that are activated by diverse extracellular stimuli. Equally complex for this family of molecular switches is the multitude of downstream effectors and the pathways that they traverse to translate extracellular signals into a spectrum of cellular consequences. To better understand the individual and collective roles of these effector signaling networks, both genetic and pharmacological tools have been developed. By either stimulating or ablating specific components in a cascade downstream of Ras activation, one can gain insight into the specific signaling underlying a particular Ras phenotype, for example, malignant transformation. In this chapter, we describe the use of activating and dominant-negative mutations, both artificial and naturally occurring, of Ras and its effectors, as well as pharmacological inhibitors used to probe the effector pathways (Raf kinase, phosphoinositol 3-kinase, Tiam1, phospholipase C epsilon, and RalGEF) implicated in Ras-mediated oncogenesis.

[PubMed - indexed for MEDLINE]

LinkOut - more resources

Full Text Sources

Other Literature Sources

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center