Format

Send to

Choose Destination
See comment in PubMed Commons below
Annu Rev Biochem. 2006;75:567-605.

Mechanisms of site-specific recombination.

Author information

1
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA. nigel.grindley@yale.edu

Abstract

Integration, excision, and inversion of defined DNA segments commonly occur through site-specific recombination, a process of DNA breakage and reunion that requires no DNA synthesis or high-energy cofactor. Virtually all identified site-specific recombinases fall into one of just two families, the tyrosine recombinases and the serine recombinases, named after the amino acid residue that forms a covalent protein-DNA linkage in the reaction intermediate. Their recombination mechanisms are distinctly different. Tyrosine recombinases break and rejoin single strands in pairs to form a Holliday junction intermediate. By contrast, serine recombinases cut all strands in advance of strand exchange and religation. Many natural systems of site-specific recombination impose sophisticated regulatory mechanisms on the basic recombinational process to favor one particular outcome of recombination over another (for example, excision over inversion or deletion). Details of the site-specific recombination processes have been revealed by recent structural and biochemical studies of members of both families.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Support Center