Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci. 2006 May 31;26(22):6011-8.

Different conformations of amyloid beta induce neurotoxicity by distinct mechanisms in human cortical neurons.

Author information

  • 1Department of Neurobiology and Behavior, University of California, Irvine, California 92697, USA.


Characterization of soluble oligomeric amyloid beta (Abeta) species in the brains of Alzheimer's disease (AD) patients and transgenic models has raised the possibility that different conformations of Abeta may contribute to AD pathology via different mechanisms. To characterize the toxic effect of different Abeta conformations, we tested side by side the effect of well characterized Abeta oligomers (AbetaOs), Abeta-derived diffusible ligands (ADDLs), and fibrillar Abeta (Abetaf) preparations in human cortical neurons (HCNs). Both AbetaOs and ADDLs bind rapidly and with high affinity to synaptic contacts and cellular membranes. AbetaOs (5 microm) induced rapid and massive neuronal death. Calcium influx accelerated, but was not required for, AbetaO toxicity. AbetaOs elicited a stereotyped succession of cellular changes consistent with the activation of a mitochondrial death apoptotic pathway. At low concentrations AbetaOs caused chronic and subtler mitochondrial alterations but minimal cell death. ADDLs induced similar toxic changes as AbetaOs but on a fivefold longer time scale. Higher concentrations of Abetaf and longer incubation times were required to produce widespread neuritic dystrophy but modest HCN cell death. Thus various Abeta species may play relevant roles in AD, causing neurotoxicity by distinct non-overlapping mechanisms affecting neuronal function and viability over multiple time courses.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center